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Abstract

We address the problem of model checking stochastic systems, i.e. checking whether a stochas-
tic system satisfies a certain temporal property with a probability greater (or smaller) than a fixed
threshold. In particular, we present a novel Statistical Model Checking (SMC) approach based on
Bayesian statistics. We show that our approach is feasible for hybrid systems with stochastic transi-
tions, a generalization of Simulink/Stateflow models. Standard approaches to stochastic (discrete)
systems require numerical solutions for large optimization problems and quickly become infeasi-
ble with larger state spaces. Generalizations of these techniques to hybrid systems with stochastic
effects are even more challenging. The SMC approach was pioneered by Younes and Simmons
in the discrete and non-Bayesian case. It solves the verification problem by combining random-
ized sampling of system traces (which is very efficient for Simulink/Stateflow) with hypothesis
testing or estimation. We believe SMC is essential for scaling up to large Stateflow/Simulink mod-
els. While the answer to the verification problem is not guaranteed to be correct, we prove that
Bayesian SMC can make the probability of giving a wrong answer arbitrarily small. The advantage
is that answers can usually be obtained much faster than with standard, exhaustive model check-
ing techniques. We apply our Bayesian SMC approach to a representative example of stochastic
discrete-time hybrid system models in Stateflow/Simulink: a fuel control system featuring hybrid
behavior and fault tolerance. We show that our technique enables faster verification than state-of-
the-art statistical techniques, while retaining the same error bounds. We emphasize that Bayesian
SMC is by no means restricted to Stateflow/Simulink models: we have in fact successfully applied
it to very large stochastic models from Systems Biology.






1 Introduction

Stochastic effects arise naturally in hybrid control systems, for example, because of uncertainties
present in the system environment (e.g., the reliability of sensor readings and actuator effects in
control systems, the impact of timing inaccuracies, the reliability of communication links in a
wireless sensor network, or the rate of message arrivals on an aircraft's communication bus). Un-
certainty can be modeled via a probability distribution, thereby resulting in a stochastic system,
i.e., a system which exhibits probabilistic behavior. This raises the question of how to verify that a
stochastic system satisfies a certain property. For example, we want to know whether the probabil-
ity of an engine controller failing to provide optimal fuel/air ratio is smaller than 0.001; or whether
the ignition succeeds within 1ms with probability at least 0.99. In fact, several temporal logics
have been developed in order to express these and other types of probabilistic properties [3, 11, 1].
The Probabilistic Model CheckingPMC) problem is to decide whether a stochastic model satis-
fies a temporal logic property with a probability greater than or equal to a certain threshold. More
formally, supposéVf is a stochastic model over a set of steédes) is a starting statepis a formula

in temporal logic, and® € (0, 1) is a probability threshold. The PMC problem is: to decide algo-
rithmically whetherM , 5o = P>g(9), i.€., to decide whether the mod# starting fromsy satisfies

the propertyp with probability at leas®. In this paper, property is expressed in Bounded Lin-

ear Temporal Logic (BLTL), a variant of LTL [21] in which the temporal operators are equipped
with time bounds. Alternatively, BLTL can be viewed as a sublogic of Koymans’ Metric Temporal
Logic [16, 20]. As system model#f, we use a stochastic version of hybrid systems modeled in
Stateflow/Simulink.

Existing algorithms for solving the PMC problem fall into one of two categories. The first
category comprises numerical methods that can compute the probability that the property holds
with high precision (e.g. [2, 3, 5, 6, 13]). Numerical methods are generally only suitable for
finite-state systems of about 1.0 10 states [17]. In real control systems, the number of states
easily exceeds this limit or is infinite, which motivates the need for algorithms for solving the PMC
problem in a probabilistic fashion, such as Statistical Model Checking (SMC). These techniques
heavily rely on simulation which, especially for large, complex systems, is generally easier and
faster than a full symbolic study of the system. This can be an important factor for industrial sys-
tems designed using efficient simulation tools like Stateflow/Simulink. Since all we need for SMC
are simulations of the system, we neither have to translate system models into separate verification
tool languages, nor have to build symbolic models of the system (e.g., Markov chains) appropriate
for numerical methods. This simplifies and speeds up the overall verification process. The most
important question, however, is what information can be concluded from the simulations about the
overall probability thatp holds fora/. The key for this are statistical techniques based on fair (iid
= independent and identically distributed) sampling of system behavior.

Statistical Model Checking treats the PMC problem as a statistical inference problem, and
solves it by randomized sampling of ttraces(or simulations) from the model. We model check
each sample trace separately to determine whether the BLTL prapéyds, and the number
of satisfying traces is used to decide whetfér= P-g(¢). This decision is made by means of
either estimation or hypothesis testing. In the first case one seeksirimate probabilisticallyi.e.,



compute with high probability a value close to) the prob#&pilhat the property holds and then
compare that estimate 612, 23] (in statistics such estimates are knowo@sidence intervajs

In the second case, the PMC problem is directly treated lagpathesis testingroblem (e.qg.,
[27, 28)), i.e., deciding between the hypothedis: M = P-g(@) that the property holds versus
the hypothesisl; : M |= P_g(¢) that it does not.

Hypothesis-testing based methods are more efficient than those based on estimatié when
(which is specified by the user) is significantly different from the true probability that the property
holds (which is determined byf andsp) [26]. In this paper we show that estimation can be much
faster for probabilities close to 1. Also note that Statistical Model Checking cannot guarantee a
correct answer to the PMC problem. The most crucial question needed to obtain meaningful results
is whether the probability that the algorithm gives a wrong answer can be bounded. We prove that
this error probability can indeed be bounded arbitrarily by the user.

Our SMC approach encompasses both hypothesis testing and estimation, and it is based on
Bayes’ theorem and sequential sampling. Bayes’ theorem enables us to incorporate prior infor-
mation about the model being verified. Sequential sampling means that the number of sampled
traces is not fixed a priori, but our algorithms instead determine the sample size at “run-time”,
depending on the evidence gathered by the samples seen so far. Because conclusive information
from the samples can be used to stop our SMC algorithms as early as possible, this often leads to
significantly smaller number of sampled traces (simulations). While our sequential sampling has
many practical advantages compared to fixed-size sampling, its theoretical analysis is significantly
more challenging.

We apply our approach to a representative example of discrete-time stochastic hybrid system
models in Stateflow/Simulink: a fault-tolerant fuel control (hybrid) system. We show that our
approach enables faster verification than state-of-the-art techniques based on statistical methods.

The contributions of this paper are as follows:

e We show how Statistical Model Checking can be used for Stateflow/Simulink-style hybrid sys-
tems with probabilistic transitions.

e We give the first application of Bayesian sequential interval estimation to Statistical Model
Checking.

e We prove analytic error bounds for our Bayesian sequential hypothesis testing and estimation
algorithms.

e In a series of experiments with different parameterizations of a relevant Simulink/Stateflow
model, we empirically show that our sequential estimation method performs better than other
estimation-based Statistical Model Checking approaches. In some cases our algorithm is faster
by several orders of magnitudes.

While the theoretical analysis of Statistical Model Checking is very challenging, a beneficial prop-
erty of our algorithms is that they are easy to implement.



2 Background

Our algorithm can be applied to any stochastic matefor which it is possible to define a prob-
ability space over its traces. Several stochastic models like discrete/continuous Markov chains
satisfy this property [28]. Here we use discrete-time hybrid systems a la Stateflow/Simulink with
probabilistic transitions.

Discrete Time Hybrid Systems with Probabilistic Transitions As a system model, we con-
sider discrete time hybrid systems with additional probabilistic transitions (our case study uses
Stateflow/Simulink). Such a modélf gives rise to a transition system that allows for discrete
transitions (e.g., from one Stateflow node to another), continuous transitions (when following dif-
ferential equations underlying Simulink models), and probabilistic transitions (following a known
probability distribution). For Stateflow/Simulink, stateassigns real values to all the state vari-
ables and identifies the current discrete state (or location) for Stateflow machines.

Formally, we start with a definition of a deterministic automaton. Then we augment it with
probabilistic transitions.

Definition 1. A discrete-time hybrid automatd®THA) consists of:

* acontinuous state spad";

a directed graph with vertices Q (locations) and edges E (control switches);

one initial state(gp, Xg) € Q x R™;

flows ¢q(t;x) € R", representing the state reached after staying in location q for tirme0t
starting from xe R";

jump functions jump: R" — R" for edges e E. We assume jurgjo be measurable (preimages
of measurable sets under juggre measurable).

Definition 2. Thetransition relatiorfor a deterministid THA is defined over Q R" as
(9,X) —A(q,X) (6,%)

where

 Fort € R>o, we havgq,x) —t (q,X) iff X= ¢q(t;x);

» Forec E, we havdq,x) —e (§,X) iff X=jump,(x) and e is an edge from q ti

* A:QxR"— R>oUE is thesimulationfunction.



The simulation functiolA makes system runs deterministic by selecting which discrete or
continuous transition to execute from the respective $tptg. For Stateflow/Simulink) satisfies
several properties, including that the first eégan clockwise orientation in the graphical notation)
that is enabled (i.e., where a jump is possible) will be chosen. Furthermore, if an edge is enabled,
a discrete transition will be taken rather than a continuous transition.

Each execution of a DTHA is obtained by following the transition relation repeatedly from
state to state. A sequence= (so,to),(S1,t1),... of § € Q x R" andt; € R>¢ is calledtrace iff
= (fo,%0) and foreach € N, 5 —n(s) S+1 and:

1. ti = A(s) if A(s) € R>o (continuous transition), or

2. t;=0if A(s) € E (discrete transition).

Thus the system follows transitions fragrto s, 1. If this transition is a continuous transition, then
t; is its durationA(s), otherwise; = O for discrete transitions. In particular, the global time at state
S = (0, %) is Y o<1 <i ti. We require that the sufy°ti must diverge, that is, the system cannot make
infinitely many state switches in finite timagn-zend. We denotej o it by 1(x), because we
can assume there is one state variable tracking global time.

A probabilisticDTHA is obtained from a DTHA by means of a probabilistic simulation func-
tion instead ofA. Unlike A, it selects discrete and continuous transitions according to a probability
density. Thestateof a probabilistic DTHA is a probability density function @ R". We denote
the set of these functions I(Q x R").

Definition 3. Thetransition functionfor a probabilisticDTHA, which we denote by, maps a
(probabilistic) state p= D(Q x R") to f € D(Q x R") with p(§, X) defined as:

| [ paxn@x@!qx(@x d@xda

R>0UE QxRN

where

* M:QxR"— D(R>oUE) is the (measurablg)robabilistic simulatioffunction;

—a(G% IS the indicator function of the preimage efq at (4,X), i.e., L, gz (Q,%x) = 1 iff
( ,X) —q (G,%), and 0 otherwise;— is as per Definition 2.

Well-definedness of the integral in Def. 3 follows directly from measurabilitylcdnd the
jump functions, plus the fact that integration over time can be restricted to a bounded interval from
0 to the current time(X). Note that initial distributions on the initial state can be obtained easily
by prefixing the system with a probabilistic transition frogn Sample traces of a probabilistic
DTHA can be obtained by sampling from the traces generatdd. by



Specifying Properties in Temporal Logic Our algorithm verifies properties dff expressed as
formulas inProbabilistic Bounded Linear Temporal LogRBLTL). We first define the syntax and
semantics oBounded Linear Temporal Log(BLTL), which we can check on a single trace, and
then extend that logic to PBLTL. Finkbeiner and Sipma [8] have defined a variant of LTL on finite
traces of discrete-event systems (where time is thus not considered).

For a stochastic modélf, let the set of state variabl&/ be a finite set of real-valued variables.
A Boolean predicate ove3V is a constraint of the forrg~v, wherey € SV, ~ € {>,<,=}, and
v e R. A BLTL property is built on a finite set of Boolean predicates o%& using Boolean
connectives and temporal operators. The syntax of the logic is given by the following grammar:

@:=y~V|(@V @) | (e A @) |~ | (@U'y),

where~ € {>,<,=},ye SV, ve Q, andt € Q>o. As usual, we can define additional temporal
operators such & = True U, or Gt = -F'— by bounded until)t.

We define the semantics of BLTL with respect to execution8/fThe fact that an execution
o satisfies property is denoted by |= ¢. We denote the trace suffix starting at stdgy o' (in
particular,c® denotes the original executiar). We denote the value of the state variapla o at
stepi by V(o,i,y).

Definition 4. Thesemanticof BLTL for a tracec® starting at the K state (ke N) is defined as
follows:

oX =y~ vifandonlyifV(a,k,y) ~ v;

o= @V @ if and only ifoX = @1 or 0¥ = @p;

o = @1 A if and only ifo* |= @1 andoX = @p;

oX = @y if and only ifo* = @1 does not hold (writterm® (- @y);

0¥ = qU'qy if and only if there existsé& N such that (a)F o<| i tks1 <t, (b) 0** = @ and (c)
for each0 < j < i, o*"1 = q.

Statistical Model Checking decides probabilistic Model Checking by repeatedly checking whether
o = @ holds on sample simulatiorsof the system. In practice, sample simulations only have a
finite duration. The question is how long these simulations have to be for the fognalhave

a well-defined semantics such tlmj= @ can be checked. B is too short, say of duration 2, the
semantics ofp U@, may be unclear. But at what duration of the simulation can we stop because
we know that the truth-value far = @ will never change by continuing the simulation? Is the
number of required simulation steps expected to be finite at all?

For a class of finite length continuous-time boolean signals, well-definedness of checking
bounded MITL properties has been conjectured in [19]. Here we generalize to infinite, hybrid
traces with real-valued signals. We prove well-definedness and the fact that a finite prefix of the
discrete time hybrid signal is sufficient for BLTL model checking, which is crucial for termination.

It especially turns out that divergence of time ensures termination of SMC.

Lemma 1 (Bounded sampling)The problem & |= ¢’ is well-defined and can be checked for
BLTL formulasp and traceso based on only dinite prefixof o of bounded duration.

5



For proving Lemma 1 we need to derive bounds on when to stogaiion. Those bounds can
be read off easily from the BLTL formula:

Definition 5. We define theampling bound &) € Q-0 of a BLTL formulag inductively as the
maximum nested sum of time bounds:

#y~v) =0
#(—@1) = #(@1)
#HoV @

)

) 1= max#( 1), #(q2))
#LA @) = max#(¢), #(¢2))

) = t+max#@), #(@))

Unlike infinite traces, actual system simulations need to be finite in length. We prove that the
semantics of BLTL formulag is well-defined on finite prefixes of traces with a duration that is
bounded by #p).

Lemma 2 (BLTL on bounded simulation tracesl.et ¢ be a BLTL formula, ke N. Then for any
two infinite traces = (so,to), (S1,t1), ... andd = (£, 1), (81,11, . .. with

Scr1 = S and . = fiyy VI € N with tr < #(0) Q)

o<lI<l
we have that
cKeoiff =0 .

Proof. The proof is by induction on the structure of the BLTL formglaH is short for induction
hypothesis.

1. If @is of the formy ~ v, theno® =y ~ viff 6 =y ~ v, becausey = & by using (1) fori = 0.
2. If @is of the form@, V @, then

=@V
iff 0¥ = @ or ¥ = @
iff 6% = ¢y or % = @ by IH as #¢, V @p) > #(¢y)
and €@V @2) = #(¢2)
iff 5% = @1V

The proof is similar for~@; and@, A @,.

3. If @is of the formgUl@,, theno® = ¢;Ul¢; iff conditions @),(b),(c) of Definition 4 hold.
Those conditions are equivalent, respectively, to the following condit@hg(),(c'):

@) Yo« «ifka <t, because @i U'gy) > t such that the durations of traceandd arety| = fi
for each index with 0 <1 < i by assumption (1).

6



(b') &t = @, by induction hypothesis as follows: We know that the tracesmdd match ak for
duration #@U'@,) and need to show that the semanticspdf'@, matches ak. By IH we
know that@, has the same semanticskat i (that isG%* |= @, iff o**' = @) provided that
we can show that the tracesandd match atk+i for duration #¢,). For this, consider any
I € Nwith ¥ 0| tiyitt < #(@2). Then

#(@p) > tkyitl = Z el — ) s
o<l o<I<i+l o<I<i

(a)
> ey —t

o<I<i+lI

Thus
Z e <t+#(@p)
O<I<i+lI

< t+max#(g1), #(92)) = #U'g)

As | € N was arbitrary, we conclude from this with assumption (1) that, indeed$§ and
t, =1 for alll € N with
tirivl <#(@)
o<l<l
Thus the IH forg, yields the equivalence @' |= @, and&**' = @, when using the equiv-
alence of §) and @').

(¢') foreach O< j < i, 8¥t1 |= @1. The proof of equivalence ta)is similar to that for ') using
] <.
The existence of ane N for which these conditions hold is equivalentb= ¢ U g,. O

Now we prove that Lemma 1 holds using prefixes of traces aaugtdithe sampling bound ),
which guarantees that finite simulations are sufficient for deciging

Proof of Lemma 1 According to Lemma 2, the decisiorn‘= @’ is uniquely determined (and
well-defined) by considering only a prefix ofof duration #¢) € Q>o. By divergence of time,
o reaches or exceeds this duratiafp}in some finite number of steps Let o’ denote a finite
prefix of o of lengthn such thaty o<| ot > #(¢). Again by Lemma 2, the semantics@f= @is
well-defined because any extenswhof ¢’ satisfieso” = @if and only if ¢’ = . Consequently
the semantics af’ |= @ coincides with the semantics of= @. On the finite trace’, it is easy to
see that BLTL is decidable by evaluating the atomic formulasv at each statg of the system
simulation. O

We now define Probabilistic Bounded Linear Temporal Logic.

Definition 6. A Probabilistic Bounded LTL (PBLTL) formula is a formula of the forgy @),
where@is a BLTL formula and € (0,1) is a probability.

7



We say thatM satisfies PBLTL property?-g(@), denoted byM = P-g(®), if and only if the prob-

ability that an execution trace ¥ satisfies BLTL property is greater than or equal t This

problem is well-defined, because, by Lemma 1, eagh@is decidable on a finite prefix af, finite
iterations of the probabilistic transition function (Def. 3) gives a well-defined probability measure,
and, thus, a corresponding probability measure can be associated to the set of all (hon-zeno) exe-
cutions of M that satisfy a BLTL formula [28]. Note that counterexamples to the BLTL property

¢ arenotcounterexamples to the PBLTL propeRyg (@), because the truth &t.¢(¢) depends on

the likelihood of all counterexamples @ This makes PMC more difficult than standard Model
Checking, because one counterexamplgig®not enough to decide.g(@).

3 Bayesian Interval Estimation

We present our new Bayesian statistical estimation algorithm. In this approach we are interested
in estimating p the (unknown) probability that an execution tracesf satisfies a given BLTL
property. The estimate will be in the form of a confidence interval, i.e., an interval which will
containp with arbitrarily high probability.

Recall that the PMC problem is to decide whethiér= P-g(¢), wheref € (0,1) andg@is a
BLTL formula. Let p be the (unknown but fixed) probability of the model satisfyinghus, the
PMC problem can now be stated as deciding between two hypotheses:

Ho:p>9 Hi:p<86. (2)

For any traceo; of the systemM, we can deterministically decide whether satisfies BLTL
formula @. Therefore, we can define a Bernoulli random varialelenoting the outcome of
o; = @. The conditional probability mass function associated Wjtts thus:

Yue [0,1] f(x|u)=uN(1—u)l™ (3)

wherex = 1 iff o; = @, otherwisex; = 0. Note that theX; are (conditionally) independent and
identically distributed (iid), as each trace is given by an independent execution of the model. Since
p is unknown, we may assume that it is given by a random variable, whose def$ity called

the prior density. The prior is usually based on our previous experiences and beliefs about the
system. A lack of information about the probability of the system satisfying the formula is usu-
ally summarized by anon-informativeor objectiveprior (see [22, Section 3.5] for an in-depth
treatment).

Sincep lies in [0, 1], we need prior densities defined over this interval. In this paper we focus
on Beta priors which are defined by the following probability density (for real parantwetBrs O
that give various shapes):

vue[0,1] g(ua,p)= w1 —u)P? 4)




where the Beta functioB(a, ) is defined as:

B(a,B) = /O Ha-1(1 - t)P-Tt 5)

By varying the parametersandf3, one can approximate other smooth unimodal densiti€®.dr
by a Beta densityg.g, the uniform density ove(0, 1) is a Beta witha = 3 = 1). For allu € [0,1]
the Beta distribution functioR g)(u) is defined:

u 1 u
Fop (U 2/ t,a,B)dt = / 1911 —t)F1qt 6
(O(,B)( ) 0 g( B) B(G,B) 0 ( ) ( )
which is the usual distribution function for a Beta random variable of paramet@r¢i.e., the
probability that it takes values less than or equal)to

In addition to their flexible shapes for various choicesugB, the advantage of using Beta
densities is that the Beta distribution is tbenjugate priorto the Bernoulli distributioh This
relationship enables us to avoid numerical integration in the implementation of both the Bayesian
estimation and hypothesis testing algorithms, as we next explain.

3.1 Bayesian Intervals

Bayes’ theorem states that if we sample from a denfSitju), whereu (the unknown probability)
is given by a random variablé over(0,1) whose density ig(-), then the posterior density of
given the datxg, ..., X, is:

(X1, - - -, Xn|U)g(U)

f
Jo F(Xe, - XalV)g(v) dv (7)

f(ulxg,...,Xn) =

and in our casé (x1,...,Xp|u) factorizes a§]i._; f (x|u), wheref (x;|u) is the Bernoulli mass func-

tion (3) associated with theth sample (remember that we assume conditionally independent,
identically distributed - iid - samples). Since the posterior is an actual distribution (note the nor-
malization constant), we can estimgtd®y themeanof the posterior. In fact, the posterior mean

is aposterior Bayes estimataf p, i.e., it minimizes the risk over the whole parameter spage of
(under a quadratic loss function, see [7, Chapter 8]).

For acoveragegoalc € (%, 1), any interval(tp,t;) such that

ty
/ f(ulxg,...,xn) du=c (8)
to
is called a 100 percentBayesian interval estimate p. Naturally, one would choodg andt; that
minimizet; — tg and satisfy (8), thus determining an optimal interval. Note thandt; are in fact
functions of the sampley, ..., X,.

LA distributionP(8) is said to be a conjugate prior for a likelihood functi®id|8), if the posteriorP(8|d) is in
the same family of distributions.



Optimal interval estimates can be found, for example, formigan of a normal distribution
with normal prior, where the resulting posterior is normal. In general, however, it is difficult to
find optimal interval estimates. For unimodal posterior densities like, we can use the posterior’s
mean as the “center” of an interval estimate.

Here, we do not pursue the computation of an optimal interval, which may be numerically
infeasible. Instead, we fix a desired half-interval widtland then sample until the probability
mass of an interval estimate of widt 2ontaining the posterior mean exceed¥Vhen sampling
from a Bernoulli distribution and with a Beta prior of parameitesB, it is known that the meap ~

of the posterior is:
R X+d

— Il 9

P n+a+p ©
wherex = S ; x; is the number of successes in the sampled xiata. , x,. The integral in (8) can
further be computed easily in terms of the Beta distribution function.

Proposition 1. Let(tp,t1) be an interval in0, 1]. The posterior probability of Bernoulli iid samples
(x1,...,%n) and Beta prior of parameters, 3 can be calculated as:

ty
/t F(UlXe, - %) AU = Figsaun e ) (t) — Fixscun e ) (10) (10)

0

where x= S ; % is the number of successes(ia, ...,x,) and F(-) is the Beta distribution func-
tion.

Proof. Direct from definition of Beta distribution function (6) and the fact that the posterior density
is a Beta of parameterst a andn— x+ 3. O

The Beta distribution function can be computed with high sacy by standard mathematical
libraries €.9.the GNU Scientific Library) or softwares(g.Matlab). Hence, the Beta distribution
is the appropriate choice for summarizing the prior distribution in Statistical Model Checking.

3.2 Bayesian Estimation Algorithm

We want to compute an interval estimatepf Prol M = @), where@is a BLTL formula and
M a stochastic hybrid system model - remember from our discussion in SectionRithaell-

defined. Fix the half-siz8 € (0, %) of the desired interval estimate fopr the coefficient € (%, 1)

to be used in (8), and the coefficients3 of the Beta prior.

Our algorithm iteratively draws iid sample trages 0o, . . ., and checks whether they satigly
At stagen, the algorithm computes, the Bayes estimator fqu (i.e., the posterior mean) according
to (9). Next, usindo = p— 90, t1 = p+ 0 it computes

t1
y:/t f(ulx,..., X)) du.
0

If y> cit stops and returnty,t; andp; otherwise it samples another trace and repeats. One should
pay attention at the extreme points of {l§el) interval, but those are easily taken care of, as shown
in Algorithm 1.

10



Algorithm 1 Statistical Model Checking by Bayesian Interval Estimates

Require: BLTL Propertyq, half-interval sized € (0, %), interval coefficient € (%, 1), Prior Beta
distribution with parameters, 3

n:=0 {number of traces drawn so far
x:=0 {number of traces satisfyingso far}
repeat

o :=draw a sample trace of the system (iid)

n=n+1

if o=@ then

X:=x+1

end if

p:=(x+a)/(n+a+p) {compute posterior mean

(to,t1) ;== (p—90,p+9) {compute interval estima}e

if t; > 1 then

(to,t1) :=(1—2-9,1)
else if tg < 0 then
(to,t1) :=(0,2-9)
end if
y := PosteriorProlg, t1) {compute posterior probability ofqqto,t1), by (10}
until (y>c)
return (to,t1),p

4 Bayesian Hypothesis Testing

In this section we briefly present our sequential Bayesian hypothesis test, which was introduced in
[15]. Let Xy, ..., X, be a sequence of Bernoulli random variables defined as for the PMC problem

in Sect. 3, and lel = (x1,...,X,) denote a sample of those variables. HgtandH; be mutually
exclusive hypotheses over the random variable’s parameter space according to (2). Suppose the
prior probabilities A(Hp) andP(H;) are strictly positive and satisfy(Hp) + P(H1) = 1. Bayes’
theorem states that thp@sterior probabilitiesare

P(d|Ho)P(Ho)
P(d)

P(d|H1)P(Hz)

P(Hold) = P(d)

P(Ha|d) = (11)

for everyd with P(d) = P(d|Ho)P(Ho) + P(d|H1)P(H1) > 0. In our casé>(d) is always non-zero
(there are no impossibfenite sequences of outcomes).

11



4.1 Bayes Factor

By Bayes’ theorem, the posterior odds for hypothékjss

P(Hold) _ P(d|Ho) P(Ho)
P(Hyd) _ P(d|Hy) P(H) " (12)

Definition 7. The Bayes factoB of sample d and hypotheseg &hd H; is

_ P(d]Ho)

= PdlHy)

For fixed priors in a given example, the Bayes factor is directly proportional to the posterior
odds by (12). Thus, it may be used as a measure of relative confiderigers1 H,, as proposed
by Jeffreys [14]. To tesHp vs. Hy, we compute the Bayes fact@ of the available datd and
then compare it against a fixed threshdld 1: we shall acceptlp iff B > T. Jeffreys interprets
the value of the Bayes factor as a measure of the evidence in faift@r(dnally,% is the evidence
in favor of H). Classically, a fixed number of samples was suggested for deditging. H1. We
develop an algorithm that chooses the number of samples adaptively.

We now show how to compute the Bayes factor. According to Definition 7, we have to calculate
the ratio of the probabilities of the observed sampte (x1, ..., X,) givenHg andHs. By (12), this
ratio is proportional to the ratio of the posterior probabilities, which can be computed from Bayes’
theorem (7) by integrating the joint densityxi|-) - - - f (X|-) with respect to the priog(-):

P(Holx1, -, %) _ Jo f(UXa,.... %) du _ fo f(xa|u)--- f (xnu) -g(u) du
P(Hilxt, .. %) (S f(uxe,...,x) du [ f(xq|u)--- f(Xa|u) - g(u) du

Thus, the Bayes factor is:

_Tu P(Holxa,.... %) T Jg f(xalu)--- f(xa|u) - g(u) du (13)

T o P(Hafxa,. %) o (9 (xg|u)--- f(xa|u) - g(u) du

wherety = P(Hp) = felg(u) du, andy = P(H1) = 1— 1. We observe that the Bayes factor
depends on the dathand on the priog, so it may be considered a measure of confidendéyin
vs. Hj provided by the data, .. ., x,, and “weighted” by the priog. When using Beta priors, the
calculation of the Bayes factor can be much simplified.

Proposition 2. The Bayes factor of §t p > 0 vs. H : p < 6 with Bernoulli sample$xy, ..., Xn)
and Beta prior of parameters, (3 is:

14k 1
Brn=—- -1
" To (F(x+a,nx+B)(e) )

where x= 3L, X is the number of successes(i,...,x)) and Rg)(-) is the Beta distribution
function of parameters s

12



4.2 Bayesian Hypothesis Testing Algorithm

Our algorithm generalizes Jeffreys’ test to a sequential version. Remember we want to establish
whetherM = P.g(@), whereb € (0,1) and@is a BLTL formula. The algorithm iteratively draws
independent and identically distributed sample trageso, ..., and checks whether they satigfy

We can model this procedure as independent sampling from a Bernoulli distributibanknown
parametep - the actual probability of the model satisfyipg At stagen the algorithm has drawn
samples«, ..., X, iid like X. It then computes the Bayes factB8raccording to Proposition 2, to
check if it has obtained conclusive evidence. The algorithm actgpifs§ B > T, and acceptsi;

iff B< % Otherwise(% < B < T) it continues drawing iid samples. This algorithm is shown in
Algorithm 2.

Algorithm 2 Statistical Model Checking by Bayesian Hypothesis Testing
Require: PBLTL PropertyP-g(®), Thresholdl > 1, Prior densityg for unknown parametep

n:=0 {number of traces drawn so far
x:=0 {number of traces satisfyingso far}
loop

o :=draw a sample trace of the system (iid)

n:=n+1

if o=@ then

X:=x+1
end if
‘B := BayesFactdn, x) {compute as in Proposition}2

if (B>T)then
return Hp accepted
else if (B < 1) then
return Hi accepted
end if
end loop

5 Analysis

Statistical Model Checking algorithms are easy to implement and—because they are based on
selective system simulation—enjoy promising scalability properties. Yet, for the same reason,
their output would be useless outside the sampled traces, unless the probability of making an error
during the PMC decision can be bounded.

As our main contribution, we prove error bounds for Statistical Model Checking by Bayesian
sequential hypothesis testing and by Bayesian interval estimation. In particular, we show that the
(Bayesian) Type I-II error probabilities for the algorithms in Sect. 3—4 can be bounded arbitrarily.

13



We recall that a Type | (Il) error occurs when we reject (acctm null hypothesis although it is
true (false).

Theorem 1 (Error bound for hypothesis testingjor any discrete random variable and prior, the
probability of a Type I-II error for the Bayesian hypothesis testing algorithm 2 is bounded above
by%, where T is the Bayes Factor threshold given as input.

Proof. We present the proof for Type | error only - for Type Il it is very similar. A Type | error
occurs when the null hypothedi) is true, but we reject it. We then want to bouR(rejectHo |
Ho). If the Bayesian algorithm 2 stops at stepthen it will acceptHp if B(d) > T, and rejecHp

if B(d) < % whered = (xq,...,Xn) is the data sample, and the Bayes Factor is

The evenf{rejectHp} is formally defined as

{rejectHo} = | J {B(d) < % A D=d} (14)
deQ

whereD is the random variable denoting a sequence discrete random variables, afis the
sample space dD - i.e., the (countable) set of all the possible realizationB ¢in our caseD is
clearly finite). We now reason:

P(rejectHp | Ho)

= (14)

P(Ugea{B(d) <1 A D=d} | Ho)

= additivity
SacaP({B(d) < § A D=d} | Ho)
= independent events
SacaP(B(d) < 1)-P(D=d | Ho)
1 B(d) < 2 iff P(D=d|Ho) < +P(D=d|Hy)
Sdeat-P(D=d | Hi)

= additivity and independence
P(UdeD =d | Hy)

I -

universal event
P(Q | H)=¢

=~

14



Note that the bouné is independent from the prior used.

Next, we lift the error bounds found in Theorem 1 for Algorithm 2 to Algorithm 1 by repre-
senting the output of the Bayesian interval estimation algorithm 1 as a hypothesis testing problem.
We use the output intervdtp,t;) of the estimation algorithm 1 to define the (null) hypothesis
Ho: p € (to,t1). Now Hp represents the hypothesis that the output of algorithm 1 is correct. Then,
we can tesHp and determine bounds on Type | and Il errors by Theorem 1. We prove that these
errors can be bounded by the user.

Theorem 2 (Error bound for estimation)For any discrete random variable and prior, the Type
| and Il errors for the output intervalto,t;) of the Bayesian estimation algorithm 1 are bounded

above by%, where c is the coverage coefficient given as inputagid the prior probability
of the hypothesis it p € (to,t1).

Proof. Let (to,t1) be the interval estimate when the estimation algorithm 1 terminates (with cover-
agec). From the hypothesis

Ho: p € (to,t1) (15)

we compute the Bayes factor féfp vs. the alternate hypothedity : p ¢ (to,t1). Then we use
Theorem 1 to derive the bounds on the Type | and Il error. If the estimation algorithm 1 terminates
at stepn with outputtp,t;, we have that:

t
f(u|x1,...,xn)du:/lf(u|x1,...,xn)du}c (16)
Ho to

and therefore (since the posterior is a distribution):

f(u[Xg,..., %) du< 1—c. (17)
Hi
The Bayes factor oflg vs Hy is, by (13):
(1_n0)_fH0f(u|x1,...,xn)du
To lef(u|X17"'aXn> du

> by (16) and (17)
(1-m) ¢
1) 1-c
-1
Therefore, by Theorem 1 the error is bounded abové?é%%) = é%ff)r;?- O
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6 Application

We study an example that is part of the Stateflow/Simulink package. The fndelstribes a

fuel controller system for a gasoline engine. It detects sensor failures, and dynamically changes
the control law to provide seamless operation. A key quantity in the model is the ratio between
the air mass flow rate (from the intake manifold) and the fuel mass flow rate (as pumped by the
injectors). The system aims at keeping the air-fuel ratio close tstthiehiometricratio of 14.6,

which represents an acceptable compromise between performance and fuel consumption. The
system estimates the “correct” fuel rate giving the target stoichiometric ratio by taking into account
sensor readings for the amount of oxygen present in the exhaust gas - Exahust Gas Oxygen (EGO)
- for the engine speed, throttle command and manifold absolute pressure. In the event of a single
sensor fault, the system detects the situation and operates the engine with a higher fuel rate to
compensate. If two or more sensors fail, the engine is shut down, since the system cannot reliably
control the air-fuel ratio.

The Stateflow control logic of the system has a total of 24 locations, grouped in 6 parallel (i.e.,
simultaneously active) states. The Simulink part of the system is described by several nonlinear
equations and a linear differential equation with a switching condition. Overall, this model pro-
vides a representative summary of the important features of hybrid systems. Our stochastic system
is obtained by introducing random faults in the EGO, speed and manifold pressure sensors. We
model the faults by three independent Poisson processes with different arrival rates. When a fault
happens, it is “repaired” with a fixed service time of one second (i.e. the sensor remains in fault
condition for one second, then it resumes normal operation). Note that the system has no free
inputs, since the throttle command provides a periodic triangular input, and the nominal speed is
never changed. This ensures that, once we set the three fault rates, for any given temporal logic
property @ the probability that the model satisfigsis well-defined. All our experiments have
been performed on a 2.4GHz Pentium 4, 1GB RAM desktop computer running Matlab R2008b on
Windows XP.

6.1 Experimental Results in Application

For our experiments we model check the following formula (null hypothesis)
Ho : M |= P>g(—~F19%G!(FuelFlowRate= 0)) (18)

for different values of threshold and sensors fault rates. We test whether with probability greater
than@ it is not the case that within 100 seconds the fuel flow rate stays zero for one second. The
fault rates are expressed in seconds and represent the mean interarrival time between two faults
(in a given sensor). In experiment 1, we use uniform priors @d0get), with null and alternate
hypotheses equally likely a priori. In experiment 2, we udermativepriors highly concentrated
around the true probability of the model satisfying the BLTL formula. The Bayes Factor threshold
isT =1000, so by Theorem 1 both Type | and Il errors are bounded by .001.

2More information on the model is availabletdtt p: / / mat hwor ks. cont pr oduct s/ si mul i nk/
denos. ht m ?fil e=/ product s/ denpbs/ shi ppi ng/ si nmul i nk/ sl deno_fuel sys. htm .
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Probability threshold 6
5 v .8 9 99
(378) 0(58/124s)| [(17/40s) 0(10/25s) 0(8/21s) 0(2/5s)
Fault (1089) | O (32/78s)| U (95/225s)| [0 (394/1013s)| [1(710/1738s)  [1(8/21s)
rates | (201020) | O(9/21s) | O (16/36s) | [ (24/54s) [J (44/100s) | [0(1626/3995s
(303030) | O(9/24s) | U (16/41s) | [ (24/59s) [0 (44/107s) | 0O (239/589s)

Table 1:Number of samples / verification time when testing (18) with uniform, equally likely priors and
T =1000: 0= "Hgp rejected’,d = ‘Hp accepted'.

Probability threshold 6
5 v .8 9 99
(378) 0(55/117s)| 0(12/28s) | [(10/25s) [0(8/21s) 0(2/5s)
Fault (1089) | U (28/69s) | U (64/150s)| I (347/876s)| (255/632s) [0(8/21s)
rates | (201020) | O (8/18s) | (13/30s) | [ (20/45s) | [0 (39/88s) | 1(1463/3613s
(303030) | O(7/18s) | 0 (13/34s) | [ (18/45s) | [0(33/80s) | [ (201/502s)

Table 2:Number of samples / verification time when testing (18) with informative priorsTardl000: [
= 'Hg rejected’,[] = *Hp accepted'.

In Table 1 and Table 2 we report our results. Even the longest tedl €099 and fault rates
(20 10 2Q in Table 1) Bayesian SMC terminates after 3995s already. This is very good perfor-
mance for a test with such a small (.001) error probability run on a standard desktop computer. We
note the total time spent for this case on actually computing the statistical test i.e., Bayes factor
computation, was just about 1s. Also, by comparing the numbers of Table 1 and 2 we note that
the use of an informative prior generally helps the algorithm - i.e., fewer samples are required to
decide.

Next, we estimate the probability thaf satisfies the following property, using our Bayesian
estimation algorithm:
M = (-F1%GL(FuelFlowRate=0)) . (19)

In particular, we ran two sets of tests, one with half-interval 8ize.05 and another with = .01.
In each set we used different values for the interval coefficdemd different sensor fault rates, as
before. Experimental results are in Table 3 and 4. We used uniform priors in both cases.

6.2 Discussion
A general trend shown by our experimental results and additional simulations is that our Bayesian
estimation model checking algorithm is generally faster at the extremes, i.e., when the unknown

probability p is close to O or close to 1. Performance is worse whéncloser to 0.5. In contrast,
the performance of our Bayesian hypothesis testing model checking algorithm is faster when the
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Table 3: Posterior mean / number of samples for estimating probability of (19) with uniform prior and

Interval coveragec
9 .95 .99 .999
(378) 41258 .376/357 | .3569/606 | .3429/972
Fault (1089) .8857/103| .8904/144| .8785/286 | .8429/590
rates (20 10 20) .9565/21 9667 /28 | .9561/112 | .9625/158
(3030 30) 9565 /21 .9667 /28 9778143 .9851 /65
samples needed in [12] 4793 5902 8477 12161

0 = .05, and comparison with the samples needed by the Chernoff-Hoeffding bound.

Interval coveragec
9 .95 99 .999
(378) .3603/6234| .3559/8802| .3558/15205| .3563/24830
Fault (1089) .8534/3381 | .8518/4844| .8528/8331 | .8534/13569
rates (20 10 20) 9764/592 | .9784/786 | .9840/1121 | .9779/2583
(30 30 30) 9913/113 | .9933/148 | .9956/227 .9971/341
samples needed in [12] 119829 147555 211933 304036

Table 4: Posterior mean / number of samples when estimating probability of (19) with uniform prior and
0 =.01, and comparison with the samples needed by the Chernoff-Hoeffding bound.

unknown true probability is far from the threshold probabili#.

We note the remarkable performance of our estimation approach compared to the technique
based on the Chernoff-Hoeffding bound [12]. From Table 3 and 4 we see that when the unknown
probability is close to 1, our algorithm can be between two and three orders of magnitude faster.
(The same argument holds when the true probability is close to 0.) Chernoff-Hoeffding bounds
hold for any random variable with bounded variance. Our Bayesian approach, instead, explicitly
builds the posterior distribution on the basis of the Bernoulli sampling distribution and the prior.

6.3 Performance Evaluation

We have conducted a series of simulations to analyze the performance (measured as number of
samples) of our sequential Bayesian estimation algorithm with respect to the unknown probability
p. In particular, we have run simulations for valuegofinging from.01 to.99, with coveraged)

of .9999 and 99999, interval half-sizedj of .001 and.005, and uniform prior. We present details

of our simulations in Figure 1.

Our Simulink experiments show that Bayesian estimation is very fast pienlose to either
0 or 1, while the algorithm needs a larger number of samples whsrclose to%. In a sense,
our algorithm can decide easier PMC instances faster: if the probapitifya formula being true
is very small or very large, we need fewer samples. This is another advantage of our approach
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Figure 1: Performance of Bayesian estimation: number of &svys probability

that it is not currently matched by other SMC estimation techniques (e.g., [12]). Our findings are
consistent with those of Yet al. for the VLSI testing domain [29].

Our simulations also indicate that the performance of the algorithm depends more strongly on
the half-sized of the estimated interval than on the coverag# the interval itself. It is much
faster to estimate an interval of half-sige= .005 with coverage = .99999 than it is to estimate
an interval ofd = .001 withc = .9999. More theoretical work is needed, however, to understand
fully the behavior of the Bayesian sequential estimation algorithm. Our initial findings suggest that
the algorithm scales very well.

7 Related Work

Younes and Simmons introduced the first algorithm for Statistical Model Checking [27, 28]. Their
work uses the SPRT [25], which is designedsonplehypothesis testinty Specifically, the SPRT
decides between the simple null hypothasjs: M = P—g,(9) against the simple alternate hy-
pothesisH] : M |= P_g,(9), whereBp < 81. The SPRT is optimal for simple hypothesis testing,

3A simple hypothesis completely specifies a distribution. For example, a Bernoulli distribution of parariseter
fully specified by the hypothesjs= 0.3 (or some other numerical value). A composite hypothesis, instead, still leaves
the free parametgrin the distribution. This results, e.qg., in a family of Bernoulli distributions with paranpeted.3.
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since it minimizes the expected number of samples amongealietts satisfying the same Type

| and Il errors, when eithet( or Hj is true [25]. The PMC problem is instead a choice between
two compositehypothesesly : M = P-g(p) versusHi : M |= P- ¢(¢). The SPRT is not defined
unlessBy # 01, so Younes and Simmons overcome this problem by separating the two hypotheses
by anindifference regior{® — 6,0+ d), inside which any answer is tolerated. Here @ < 1 is a
user-specified parameter. It can be shown that the SPRT with indifference region can be used for
testing composite hypotheses, while respecting the same Type | and Il errors of a standard SPRT
[9, Section 3.4]. However, in this case the test is no longer optimal, and the maximum expected
sample size may be much bigger than the optimal fixed-size sample test - see [4] and [9, Section
3.6]. Our approach solves instead the composite hypothesis testing problem, with no indifference
region.

The method of [12] uses a fixed number of samples and estimates the probability that the
property holds as the number of satisfying traces divided by the number of sampled traces. Their
algorithm guarantees the accuracy of the results using Chernoff-Hoeffding bounds. In particular,
their algorithm can guarantee that the difference in the estimated and the true probability is less
thang, with probabilityp, wherep < 1 ande > 0 are user-specified parameters. Our experimental
results show a significant advantage of our Bayesian estimation algorithm in the sample size.

Grosu and Smolka use a standard acceptance sampling technique for verifying formulas in
LTL [10]. Their algorithm randomly samples lassos (i.e., random walks ending in a cycle) from a
Buchi automaton in an on-the-fly fashion. The algorithm terminates if it finds a counterexample.
Otherwise, the algorithm guarantees that the probability of finding a counterexample is le§s than
under the assumption that the true probability that the LTL formula is true is greates (damd
€ are user-specified parameters).

Senet al.[23] used thep-valuefor the null hypothesis as a statistic for hypothesis testing. The
p-value is defined as the probability of obtaining observations at least as extreme as the one that
was actually seen, given that the null hypothesis is true. It is important to realize fhedlae
is not the probability that the null hypothesis is true. S#ral’s method does not have a way to
control the Type | and Il errors. Sest al. [24] have started investigating the extension of SMC
to unbounded (i.e., standard) LTL properties. Finally, Langmead [18] has applied Bayesian point
estimation and SMC for querying Dynamic Bayesian Networks.

8 Conclusions and Future Work

Extending our Statistical Model Checking (SMC) algorithm that uses Bayesian Sequential Hypoth-
esis Testing, we have introduced the first SMC algorithm based on Bayesian Interval Estimation.
For both algorithms, we have proven analytic bounds on the probability of returning an incorrect
answer, which are crucial for understanding the outcome of Statistical Model Checking. We have
used SMC for Stateflow/Simulink models of a fuel control system featuring fault-tolerance and
hybrid behavior. Because verification is fast in most cases, we expect SMC methods to enjoy good
scalability properties for larger Stateflow/Simulink models. Our Bayesian estimation is orders of
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magnitudes faster than previous estimation-based modekictgealgorithms.
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